B.Sc./B.A. $\mathbf{2}^{\text {nd }}$ Semester

Session 2023-24

Dr. Naveen Kumar, Assistant Professor, Department of Mathematics
Even Semester

Vector Calculus

January:

Scalar and vector product of three vectors, product of four vectors. Reciprocal vectors. Vector differentiation. Scalar Valued point functions, vector valued point functions, derivative along a curve, directional derivatives.

Febuary:

Gradient of a scalar point function, geometrical interpretation of grad [3, character of gradient
 Gradient of scalar point as point function, examples. Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator.

March:

Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors. Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co-ordinates.

April:

Vector integration; Line integral, Surface integral, Volume integral. Theorems of Gauss, Green \& Stokes and problems based on these theorms.

B.Sc./B.A. $\mathbf{4}^{\text {th }}$ Semester

Session 2023-24
Dr. Naveen Kumar, Assistant Professor, Department of Mathematics
Even Semester

Sequence and Series

January:

Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points, isolated points, limit points, open sets, closed set, interior of a set, closure of a set in real numbers and their properties. Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem.

Febuary:

Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences, Cauchy's sequence, Cauchy general principle of convergence, Subsequences, Subsequential limits.

Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series, Hyper Harmonic series or p-series.

March:

Infinite series: D-Alembert's ratio test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test, Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's condensation test.

April:

Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: abel's lemma, Abel's test, Dirichlet's test, Insertion and removal of parenthesis, re-arrangement of terms in a series, Dirichlet's theorem, Riemann's Re-arrangement theorem, Pringsheim's theorem (statement only), Multiplication of series, Cauchy product of series, (definitions and examples only) Convergence and absolute convergence of infinite products.

B.Sc./B.A. $\mathbf{- 6}^{\text {th }}$ Semester
 Session 2023-24
 Dr. Naveen Kumar, Assistant Professor, Department of Mathematics
 Even Semester
 Real and Complex Analysis

Januray:
Jacobians, Beta and Gama functions, Double and Triple integrals, Dirichlets integrals, change of order of integration in double integrals.

Febuary:

Fourier's series: Fourier expansion of piecewise monotonic functions, Properties of Fourier Coefficients, Dirichlet's conditions, Parseval's identity for Fourier series, Fourier series for even and odd functions, Half range series, Change of Intervals.

March

Extended Complex Plane, Stereographic projection of complex numbers, continuity and differentiability of complex functions, Analytic functions, Cauchy-Riemann equations. Harmonic functions.

April:

Mappings by elementary functions: Translation, rotation, Magnification and Inversion.

Conformal Mappings, Mobius transformations. Fixed pints, Cross ratio, Inverse Points and critical mappings.

B.Com. $\mathbf{- 2}^{\text {nd }}$ Semester
 Session 2023-24
 Dr. Naveen Kumar, Assistant Professor, Department of Mathematics

Business Mathematics-II

January:
Matrices and Determinants: Definition of a Matrix ; Types of Matrices, Algebra of Matrices; Calculation of values of Determinants up to third order; adjoint of a Matrix, elementary row and column operations; Finding inverse matrix through adjoint and elementary row or column operations; Solution of a system of Linear equations having unique Solution and involving not more than three variables

Febuary:

Differentiation (only algebraic problem) ; Application of differentiation

March:

Compound Interest and Annuities: Certain different types of interest rate; Concept of present value and amount of a sum; Types of annuities; Present value and amount of an annuity, including the case of continuous compounding

April:

Ratio, Proportion and Percentage; Profit and Loss

